论文标题
关于阳光的两个猜想
On two conjectures of Sun concerning Apéry-like series
论文作者
论文摘要
在本文中,我们将证明Z.-W。的两个猜想。关于Apéry的系列的太阳。该系列之一是交替的,而另一个不是。我们的主要策略是将系列(分别为〜交替系列)转换为对数 - sine-Cosine(resp。〜log-sinh-cosh)积分。然后,我们以单价值的Bloch-Wigner-ramakrishnan-Wojtkowiak-Zagier Polygarithms表示所有这些积分。然后,这些猜想是从重量$ 3 $和$ 4 $的几个高度非平凡的功能方程式遵循的。
In this paper, we shall prove two conjectures of Z.-W. Sun concerning Apéry-like series. One of the series is alternating whereas the other one is not. Our main strategy is to convert the series (resp.~the alternating series) to log-sine-cosine (resp.~log-sinh-cosh) integrals. Then we express all these integrals in terms of single-valued Bloch-Wigner-Ramakrishnan-Wojtkowiak-Zagier polylogarithms. The conjectures then follow from a few highly non-trivial functional equations of the polylogarithms of weight $3$ and $4$.