论文标题

BN环掺杂石墨烯的结构和电子特性的第一原理研究

First-principles study of the structural and electronic properties of BN-ring doped graphene

论文作者

Caputo, Laura, Nguyen, Viet-Hung, Charlier, Jean-Christophe

论文摘要

由于基于晚期硅的设备组件是适度的化学调节,因此掺杂的石墨烯已成为有前途的候选人,可以在柔性微型化的电子设备中代替这种半导体材料。实际上,杂原子共掺杂(即与硼和/或氮)是一种有吸引力的策略,可以调整其结构和电子特性,可能诱导石墨烯中的带隙。但是,目前合成的BN掺杂碳基材料是随机掺杂的,导致其电子性能不可再现。本研究使用第一原理技术调查了石墨烯与硼嗪样环的周期性掺杂,以便寻找一类全新的BCN混合2D材料,表现出高稳定性和优化的频带差距,以实现光电 - 电子应用。从头算的计算表明,BN-RING掺杂的石墨烯显示具有与基准的理想周期性BCN系统(例如Bc $ _3 $,C $ _3 $ _3 $ n $ _4 $,BC $ _2 $ N)相当的粘性能量,其线性降低了趋势趋于趋势趋势。 BN环掺杂石墨烯系统的带隙是使用多体扰动技术计算的,发现对掺杂模式很敏感,对于表现出相同方向的高浓度的BN环的带隙要大得多。这些预测表明,BN环掺杂的石墨烯材料可能是下一代光电设备的有趣候选者,并使用化学自下而上的方法为其合成开放机会。

Since advanced Silicon-based device components are moderately chemically tunable, doped graphene has emerged as a promising candidate to replace this semiconducting material in flexible miniaturized electronic devices. Indeed, heteroatom co-doping (i.e. with boron and/or nitrogen) is an appealing strategy to tune both its structural and electronic properties, possibly inducing a band gap in graphene. However, presently synthesized BN-doped carbon-based materials are randomly doped, leading to their electronic properties not being reproducible. Using first-principles techniques, the present study investigates the periodic doping of graphene with borazine-like rings in order to search for an entirely new class of BCN hybrid 2D materials exhibiting high stabilities and optimized band gaps for opto-electronic applications. Ab initio calculations show that BN-ring doped graphene displays cohesive energies comparable with benchmark ideal periodic BCN systems (such as BC$_3$, C$_3$N$_4$, BC$_2$N) with a decreasing linear trend toward high concentrations of BN-rings. Band gaps of BN-ring doped graphene systems are calculated using many-body perturbation techniques and are found to be sensitive to the doping pattern and to be considerably larger for high concentrations of BN rings exhibiting the same orientation. These predictions suggest that BN-ring doped graphene materials could be interesting candidates for the next generation of optoelectronic devices and open new opportunities for their synthesis using chemical bottom-up approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源