论文标题

与单纯形扩散的分类SDE

Categorical SDEs with Simplex Diffusion

论文作者

Richemond, Pierre H., Dieleman, Sander, Doucet, Arnaud

论文摘要

扩散模型通常在生成建模的标准框架中运行,通过产生连续值的数据点。为此,他们依赖于原始数据分布的进行性高斯平滑,该平滑涉及标准布朗运动的增量的SDE解释。但是,一些应用程序(例如文本生成或增强学习)自然可以通过扩散分类值数据来更好地为您提供,即将扩散扩散到概率分布的空间。为此,这个简短的理论说明提出了单纯形扩散,这是直接扩散位于n维概率单纯词上的数据的方法。我们展示了这与单纯形上的Dirichlet分布以及如何实现类似SDE的关系,这要归功于多维Cox-Ingersoll-Ross过程(缩写为CIR),该过程以前用于经济学和数学融资。最后,我们就CIR过程的轨迹的数值实施进行了评论,并讨论了我们方法的某些局限性。

Diffusion models typically operate in the standard framework of generative modelling by producing continuously-valued datapoints. To this end, they rely on a progressive Gaussian smoothing of the original data distribution, which admits an SDE interpretation involving increments of a standard Brownian motion. However, some applications such as text generation or reinforcement learning might naturally be better served by diffusing categorical-valued data, i.e., lifting the diffusion to a space of probability distributions. To this end, this short theoretical note proposes Simplex Diffusion, a means to directly diffuse datapoints located on an n-dimensional probability simplex. We show how this relates to the Dirichlet distribution on the simplex and how the analogous SDE is realized thanks to a multi-dimensional Cox-Ingersoll-Ross process (abbreviated as CIR), previously used in economics and mathematical finance. Finally, we make remarks as to the numerical implementation of trajectories of the CIR process, and discuss some limitations of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源