论文标题
使用深度学习模型从心脏磁共振成像中对心血管疾病的自动诊断:评论
Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep Learning Models: A Review
论文作者
论文摘要
近年来,心血管疾病(CVD)已成为全球死亡率的主要原因之一。 CVD出现较小的症状,并逐渐恶化。开始CVD时,大多数人会出现诸如疲惫,呼吸急促,脚踝肿胀,液体保留和其他症状等症状。冠状动脉疾病(CAD),心律不齐,心肌病,先天性心脏缺陷(CHD),二尖瓣反流和心绞痛是最常见的CVD。临床方法,例如血液测试,心电图(ECG)信号和医学成像是用于检测CVD的最有效方法。在诊断方法中,心脏磁共振成像(CMR)越来越多地用于诊断,监测疾病,计划治疗和预测CVD。再加上CMR数据的所有优点,CVDS诊断对于医生而言,由于许多片段的数据,低对比度等,为解决这些问题而言,深度学习(DL)技术已用于使用CMR数据诊断CVD,并且目前在此领域进行了许多研究。这篇综述概述了使用CMR图像和DL技术在CVD检测中进行的研究。介绍部分研究了CVD类型,诊断方法和最重要的医学成像技术。在下文中,提出了使用CMR图像和最重要的DL方法检测CVD的研究。另一节讨论了从CMR数据诊断CVD的挑战。接下来,讨论部分讨论了此评论的结果,并概述了CMR图像和DL技术中CVD诊断的未来工作。这项研究的最重要发现是在“结论”部分中提出的。
In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMR) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians due to many slices of data, low contrast, etc. To address these issues, deep learning (DL) techniques have been employed to the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. In the following, investigations to detect CVDs using CMR images and the most significant DL methods are presented. Another section discussed the challenges in diagnosing CVDs from CMR data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. The most important findings of this study are presented in the conclusion section.