论文标题

部分可观测时空混沌系统的无模型预测

Stabilizer subsystem decompositions for single- and multi-mode Gottesman-Kitaev-Preskill codes

论文作者

Shaw, Mackenzie H., Doherty, Andrew C., Grimsmo, Arne L.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The Gottesman-Kitaev-Preskill (GKP) error correcting code encodes a finite dimensional logical space in one or more bosonic modes, and has recently been demonstrated in trapped ions and superconducting microwave cavities. In this work we introduce a new subsystem decomposition for GKP codes that we call the stabilizer subsystem decomposition, analogous to the usual approach to quantum stabilizer codes. The decomposition has the defining property that a partial trace over the non-logical stabilizer subsystem is equivalent to an ideal decoding of the logical state. We describe how to decompose arbitrary states across the subsystem decomposition using a set of transformations that move between the decompositions of different GKP codes. Besides providing a convenient theoretical view on GKP codes, such a decomposition is also of practical use. We use the stabilizer subsystem decomposition to efficiently simulate noise acting on single-mode GKP codes, and in contrast to more conventional Fock basis simulations, we are able to to consider essentially arbitrarily large photon numbers for realistic noise channels such as loss and dephasing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源