论文标题
部分可观测时空混沌系统的无模型预测
Strong Coupling of Self-Trapped Excitons to Acoustic Phonons in Bismuth Perovskite $\textrm{Cs}_{3}\textrm{Bi}_{2}\textrm{I}_{9}$
论文作者
论文摘要
为了评估金属 - 卤化物钙钛矿的潜在光电应用,对载体与极性晶格之间相互作用的性质,强度和动态有详细的了解至关重要。在这里,我们报告了基于bismuth的钙钛矿$ \ textrm {cs} _ {3} \ textrm {bi} _ {2} \ textrm {i} _ {9} $由短暂反射率和超级反射电子差异揭示的电子和结构动力学。这些实验结果与理论分析相结合的盘问允许鉴定主要的载波偶联机制和相关的时间尺度。发现将载体光注射到$ \ textrm {cs} _ {3} \ textrm {bi} _ {2} \ textrm {i} _ {9} $以超快时间尺度上的自我捕获的激子形式。但是,他们保留了大部分能量,并且在早期的耦合与Fröhlich型光学声子受到限制。取而代之的是,长寿命的激子通过变形电位发挥电子应力,并在10 ps中发展为相干的声音子。从子P到NS及以后,在结构扭曲的各个不同阶段都可以发现相似的原子位移,从有限的局部调制到相干应变场,再到较长时间的Debye-Waller随机原子运动。当前的结果表明,除光伏以外的其他应用中,可能使用基于二心的钙钛矿来利用载体更强的自我捕获和长寿。
To assess the potential optoelectronic applications of metal-halide perovskites, it is critical to have a detailed understanding of the nature, strength, and dynamics of the interactions between carriers and the polar lattices. Here, we report the electronic and structural dynamics of bismuth-based perovskite $\textrm{Cs}_{3}\textrm{Bi}_{2}\textrm{I}_{9}$ revealed by transient reflectivity and ultrafast electron diffraction. A cross-examination of these experimental results combined with theoretical analyses allows the identification of the major carrier-phonon coupling mechanism and the associated time scales. It is found that carriers photoinjected into $\textrm{Cs}_{3}\textrm{Bi}_{2}\textrm{I}_{9}$ form self-trapped excitons on an ultrafast time scale. However, they retain most of their energy and their coupling to Fröhlich-type optical phonons is limited at early times. Instead, the long-lived excitons exert an electronic stress via deformation potential and develop a prominent, sustaining strain field as coherent acoustic phonons in 10 ps. From sub-ps to ns and beyond, a similar extent of the atomic displacements is found throughout the different stages of structural distortions, from limited local modulations to a coherent strain field to the Debye-Waller random atomic motions on longer times. The current results suggest the potential use of bismuth-based perovskites for applications other than photovoltaics to take advantage of carriers' stronger self-trapping and long lifetime.