论文标题

部分可观测时空混沌系统的无模型预测

Trust and Believe -- Should We? Evaluating the Trustworthiness of Twitter Users

论文作者

Khan, Tanveer, Michalas, Antonis

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Social networking and micro-blogging services, such as Twitter, play an important role in sharing digital information. Despite the popularity and usefulness of social media, they are regularly abused by corrupt users. One of these nefarious activities is so-called fake news -- a "virus" that has been spreading rapidly thanks to the hospitable environment provided by social media platforms. The extensive spread of fake news is now becoming a major problem with far-reaching negative repercussions on both individuals and society. Hence, the identification of fake news on social media is a problem of utmost importance that has attracted the interest not only of the research community but most of the big players on both sides - such as Facebook, on the industry side, and political parties on the societal one. In this work, we create a model through which we hope to be able to offer a solution that will instill trust in social network communities. Our model analyses the behaviour of 50,000 politicians on Twitter and assigns an influence score for each evaluated user based on several collected and analysed features and attributes. Next, we classify political Twitter users as either trustworthy or untrustworthy using random forest and support vector machine classifiers. An active learning model has been used to classify any unlabeled ambiguous records from our dataset. Finally, to measure the performance of the proposed model, we used accuracy as the main evaluation metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源