论文标题

部分可观测时空混沌系统的无模型预测

Interplay between exogenous triggers and endogenous behavioral changes in contagion processes on social networks

论文作者

Eminente, Clara, Artime, Oriol, De Domenico, Manlio

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

In recent years, statistical physics' methodologies have proven extremely successful in offering insights into the mechanisms that govern social interactions. However, the question of whether these models are able to capture trends observed in real-world datasets is hardly addressed in the current literature. With this work we aim at bridging the gap between theoretical modeling and validation with data. In particular, we propose a model for opinion dynamics on a social network in the presence of external triggers, framing the interpretation of the model in the context of misbehavior spreading. We divide our population in aware, unaware and zealot/educated agents. Individuals change their status according to two competing dynamics, referred to as behavioral dynamics and broadcasting. The former accounts for information spreading through contact among individuals whereas broadcasting plays the role of an external agent, modeling the effect of mainstream media outlets. Through both simulations and analytical computations we find that the stationary distribution of the fraction of unaware agents in the system undergoes a phase transition when an all-to-all approximation is considered. Surprisingly, such a phase transition disappears in the presence of a minimum fraction of educated agents. Finally, we validate our model using data collected from the public discussion on Twitter, including millions of posts, about the potential adverse effects of the AstraZeneca vaccine against COVID-19. We show that the intervention of external agents, as accounted for in our model, is able to reproduce some key features that are found in this real-world dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源