论文标题

部分可观测时空混沌系统的无模型预测

Improving Josephson junction reproducibility for superconducting quantum circuits: junction area fluctuation

论文作者

Pishchimova, A. A., Smirnov, N. S., Ezenkova, D. A., Krivko, E. A., Zikiy, E. V., Moskalev, D. O., Ivanov, A. I., Korshakov, N. D., Rodionov, I. A.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Josephson superconducting qubits and parametric amplifiers are prominent examples of superconducting quantum circuits that have shown rapid progress in recent years. With the growing complexity of such devices, the requirements for reproducibility of their electrical properties across a chip have become stricter. Thus, the critical current $I_c$ variation of the Josephson junction, as the most important electrical parameter, needs to be minimized. Critical current, in turn, is related to normal-state resistance the Ambegaokar-Baratoff formula, which can be measured at room temperature. Here, we focus on the dominant source of Josephson junction critical current non-uniformity junction area variation. We optimized Josephson junctions fabrication process and demonstrate resistance variation of $9.8-4.4\%$ and $4.8-2.3\%$ across $22{\times}22$ $mm^2$ and $5{\times}10$ $mm^2$ chip areas, respectively. For a wide range of junction areas from $0.008$ $μm^2$ to $0.12$ $μm^2$ we ensure a small linewidth standard deviation of $4$ $nm$ measured over 4500 junctions with linear dimensions from $80$ to $680$ $nm$. The developed process was tested on superconducting highly coherent transmon qubits $(T_1 > 100\:μs)$ and a nonlinear asymmetric inductive element parametric amplifier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源