论文标题
部分可观测时空混沌系统的无模型预测
Worldsheet computation of heavy-light correlators
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We compute a large collection of string worldsheet correlators describing light probes interacting with heavy black hole microstates. The heavy states consist of NS5 branes carrying momentum and/or fundamental string charge. In the fivebrane decoupling limit, worldsheet string theory on a family of such backgrounds is given by exactly solvable null-gauged WZW models. We construct physical vertex operators in these cosets, including all massless fluctuations. We first compute a large class of novel heavy-light-light-heavy correlators in the AdS$_3$ limit, where the light operators include those dual to chiral primaries of the holographically dual CFT. We compare a subset of these correlators to the holographic CFT at the symmetric product orbifold point, and find precise agreement in all cases, including for light operators in twisted sectors of the orbifold CFT. The agreement is highly non-trivial, and includes amplitudes that describe the analogue of Hawking radiation for these microstates. We further derive a formula for worldsheet correlators consisting of $n$ light insertions on these backgrounds, and discuss which subset of these correlators are likely to be protected. As a test, we compute a heavy-light five-point function, obtaining precisely the same result both from the worldsheet and the symmetric orbifold CFT. This paper is a companion to and extension of [arXiv:2203.13828].