论文标题
部分可观测时空混沌系统的无模型预测
Self-consistent Reasoning For Solving Math Word Problems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Math word problems (MWPs) is a task that automatically derives solution expression from a giving math problems in text. The previous studies suffer from spurious correlations between input text and output expression. To mitigate this issue, we propose a self-consistent reasoning framework called SCR, which attempts to adopt a pruning strategy to correct the output distribution shift so as to implicitly fix those spurious correlative samples. Specifically, we firstly obtain a sub-network by pruning a roberta2tree model, for the sake to use the gap on output distribution between the original roberta2tree model and the pruned sub-network to expose spurious correlative samples. Then, we calibrate the output distribution shift by applying symmetric Kullback-Leibler divergence to alleviate spurious correlations. In addition, SCR generates equivalent expressions, thereby, capturing the original text's logic rather than relying on hints from original text. Extensive experiments on two large-scale benchmarks demonstrate that our model substantially outperforms the strong baseline methods.