论文标题

在依赖位置的质量背景下的半无限量子井

Semi-infinite quantum wells in a position-dependent mass background

论文作者

Quesne, C.

论文摘要

通过使用摩尔斯电位的恒定质量schrödinger方程开始的点规范转换,这表明,具有与位置相关的质量相关的非矩形曲线相关的半限定量子井模型,该模型与位置的无限质量相关,对于某些位置的负值而言是无限的,而对于后者的大正值可能会引起较大的正极值。此外,通过从Rosen-Morse II电位而不是Morse One构建和求解与相同位置依赖质量相关的另一种半无限量子。

By using a point canonical transformation starting from the constant-mass Schrödinger equation for the Morse potential, it is shown that a semi-infinite quantum well model with a non-rectangular profile associated with a position-dependent mass that becomes infinite for some negative value of the position, while going to a constant for a large positive value of the latter, can be easily derived. In addition, another type of semi-infinite quantum well associated with the same position-dependent mass is constructed and solved by starting from the Rosen-Morse II potential instead of the Morse one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源