论文标题

血管生成方程的统计理论

The statistical theory of the angiogenesis equations

论文作者

Birnir, Björn, Bonilla, Luis, Carretero, Manuel, Terragni, Filippo

论文摘要

血管生成是一个多尺度过程,主要血管发出次生血液芽,该血管芽到缺乏氧气的区域。血管生成可以是器官生长和发育的自然过程,也可以是由癌性肿瘤诱导的病理学。血管生成随机模型的平均场近似是由活性尖端血管密度的部分微分方程(PDE)组成。在该方程式中添加高斯和跳跃噪声项会产生定义无限尺寸lévy过程的随机PDE,并且是血管生成统计理论的基础。相关的功能方程已解决,并获得了不变的度量。将结果与对血管生成的随机模型的直接数值模拟和不变型测量乘以指数衰减的因子。将该理论的结果与基本血管生成模型的直接数值模拟进行了比较。不变的度量和力矩是korteweg-de vries soliton的函数,该功能近似于活性血管尖端的确定性密度。

Angiogenesis is a multiscale process by which a primary blood vessel issues secondary vessel sprouts that reach regions lacking oxygen. Angiogenesis can be a natural process of organ growth and development or a pathological induced by a cancerous tumor. A mean field approximation for a stochastic model of angiogenesis consists of partial differential equation (PDE) for the density of active tip vessels. Addition of Gaussian and jump noise terms to this equation produces a stochastic PDE that defines an infinite dimensional Lévy process and is the basis of a statistical theory of angiogenesis. The associated functional equation has been solved and the invariant measure obtained. The results are compared to a direct numerical simulation of the stochastic model of angiogenesis and invariant measure multiplied by an exponentially decaying factor. The results of this theory are compared to direct numerical simulations of the underlying angiogenesis model. The invariant measure and the moments are functions of the Korteweg-de Vries soliton which approximates the deterministic density of active vessel tips.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源