论文标题
部分可观测时空混沌系统的无模型预测
Knowledge-Guided Exploration in Deep Reinforcement Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
This paper proposes a new method to drastically speed up deep reinforcement learning (deep RL) training for problems that have the property of state-action permissibility (SAP). Two types of permissibility are defined under SAP. The first type says that after an action $a_t$ is performed in a state $s_t$ and the agent has reached the new state $s_{t+1}$, the agent can decide whether $a_t$ is permissible or not permissible in $s_t$. The second type says that even without performing $a_t$ in $s_t$, the agent can already decide whether $a_t$ is permissible or not in $s_t$. An action is not permissible in a state if the action can never lead to an optimal solution and thus should not be tried (over and over again). We incorporate the proposed SAP property and encode action permissibility knowledge into two state-of-the-art deep RL algorithms to guide their state-action exploration together with a virtual stopping strategy. Results show that the SAP-based guidance can markedly speed up RL training.