论文标题
部分可观测时空混沌系统的无模型预测
Mid-Infrared Echoes of Ambiguous Nuclear Transients Reveal High Dust Covering Fractions: Evidence for Dusty Tori
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Alongside the recent increase in discoveries of tidal disruption events (TDEs) have come an increasing number of ambiguous nuclear transients (ANTs). These ANTs are characterized by hot blackbody-like UV/optical spectral energy distributions (SEDs) and smooth photometric evolution, often with hard powerlaw-like X-ray emission. ANTs are likely exotic TDEs or smooth flares originating in active galactic nuclei (AGNs). While their emission in the UV/optical and X-ray has been relatively well-explored, their infrared (IR) emission has not been studied in detail. Here we use the NEOWISE mission and its low-cadence mapping of the entire sky to study mid-infrared dust reprocessing echoes of ANTs. We study 19 ANTs, finding significant MIR flares in 18 objects for which we can estimate an IR luminosity and temperature evolution. The dust reprocessing echoes show a wide range in IR luminosities ($\sim10^{42} - 10^{45}$ erg s$^{-1}$) with blackbody temperatures largely consistent with sublimation temperature of graphite grains. Excluding the two sources possibly associated with luminous supernovae (ASASSN-15lh and ASASSN-17jz), the dust covering fractions (f$_c$) for detected IR flares lie between 0.05 and 0.91, with a mean of f$_c$ = 0.29 for all ANTs (including limits) and f$_c$ = $0.38 \pm 0.04$ for detections. These covering fractions are much higher than optically-selected TDEs and similar to AGNs. We interpret the high covering fractions in ANT host galaxies as evidence for the presence of a dusty torus.