论文标题

部分可观测时空混沌系统的无模型预测

Impact of Rubin Observatory cadence choices on supernovae photometric classification

论文作者

Alves, Catarina S., Peiris, Hiranya V., Lochner, Michelle, McEwen, Jason D., Kessler, Richard

论文摘要

Vera C. Rubin天文台对时空(LSST)的遗产调查将发现空前数量的超新星(SNE),对所有事件进行光谱分类。因此,LSST将依赖于光度分类,其准确性取决于尚未尚未定义的LSST观察策略。在这项工作中,我们使用模拟的多波段光曲线分析了节奏选择对分类性能的影响。首先,我们使用LSST基线节奏,非滚动节奏和Presto-Color Cadence模拟SNE,该节奏每晚三次观察每个天空的位置,而不是两次。每个模拟数据集都包括一个光谱确认的训练集,我们将其增强以代表测试集作为分类管道的一部分。然后,我们使用光度瞬态分类库SNMACHINE来构建分类器。我们发现,基线观察策略中使用的滚动节奏的活性区域可在相对于背景区域的分类性能提高25%。相对于背景区域的宇宙学型IA超新星的数量,积极滚动区域的性能的这种提高也与高达2.7倍的增加有关。但是,由于更不规则地采样的光曲线,在Presto-Colors Degrades分类性能中实现的每晚第三次访问。总体而言,我们的结果确立了与完整SNE光曲线分类有关的观察节奏的避免,这反过来又影响了LSST的光度SNE宇宙学。

The Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST) will discover an unprecedented number of supernovae (SNe), making spectroscopic classification for all the events infeasible. LSST will thus rely on photometric classification, whose accuracy depends on the not-yet-finalized LSST observing strategy. In this work, we analyze the impact of cadence choices on classification performance using simulated multi-band light curves. First, we simulate SNe with an LSST baseline cadence, a non-rolling cadence, and a presto-color cadence which observes each sky location three times per night instead of twice. Each simulated dataset includes a spectroscopically-confirmed training set, which we augment to be representative of the test set as part of the classification pipeline. Then, we use the photometric transient classification library snmachine to build classifiers. We find that the active region of the rolling cadence used in the baseline observing strategy yields a 25% improvement in classification performance relative to the background region. This improvement in performance in the actively-rolling region is also associated with an increase of up to a factor of 2.7 in the number of cosmologically-useful Type Ia supernovae relative to the background region. However, adding a third visit per night as implemented in presto-color degrades classification performance due to more irregularly sampled light curves. Overall, our results establish desiderata on the observing cadence related to classification of full SNe light curves, which in turn impacts photometric SNe cosmology with LSST.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源