论文标题
用低温RF-光谱缩放超导量子计算机
Scaling up Superconducting Quantum Computers with Cryogenic RF-photonics
论文作者
论文摘要
当今的数百量子量子计算机需要数百万个Qubits的巨大比例,以便在解决现实世界中的问题上实用。尽管已经证明了各种量子技术,但可伸缩性仍然是一个主要障碍。超导(SC)量子位是克服这一挑战的最成熟,最有前途的技术之一。但是,这些量子位驻留在millikelvin的低温稀释冰箱中,使它们与热和电噪声隔离。它们通过极其复杂的接线和电缆由装满外部电子设备控制。尽管可以在单个芯片上制造成千上万个量子位并冷却至millikelvin温度,但是扩大控制和读数电子设备仍然是一个难以捉摸的目标。这主要是由于低温系统中可用的冷却能力有限,从而限制了接线能力和电缆热负荷管理。 在本文中,我们专注于使用低温RF-Photonic链接来扩展XY控制线的数量。这是建造一千个Qubit超导QC的主要障碍之一。我们将首先审查并研究最先进的方法的挑战,包括低温CMO和深层光子方法,以扩大SC量化系统的控制界面。我们将讨论由于主动耗散和被动热泄漏而导致的局限性。通过分析对噪声源和热预算限制进行建模,我们将证明我们的解决方案可以达到一千吨的规模。我们提出的方法可以使用高级硅光子过程无缝实现,并且可以使用波长多路复用(WDM)进一步减少所需的光纤数量。
Today's hundred-qubit quantum computers require a dramatic scale up to millions of qubits to become practical for solving real-world problems. Although a variety of qubit technologies have been demonstrated, scalability remains a major hurdle. Superconducting (SC) qubits are one of the most mature and promising technologies to overcome this challenge. However, these qubits reside in a millikelvin cryogenic dilution fridge, isolating them from thermal and electrical noise. They are controlled by a rack-full of external electronics through extremely complex wiring and cables. Although thousands of qubits can be fabricated on a single chip and cooled down to millikelvin temperatures, scaling up the control and readout electronics remains an elusive goal. This is mainly due to the limited available cooling power in cryogenic systems constraining the wiring capacity and cabling heat load management. In this paper, we focus on scaling up the number of XY-control lines by using cryogenic RF-photonic links. This is one of the major roadblocks to build a thousand qubit superconducting QC. We will first review and study the challenges of state-of-the-art proposed approaches, including cryogenic CMOS and deep-cryogenic photonic methods, to scale up the control interface for SC qubit systems. We will discuss their limitations due to the active power dissipation and passive heat leakage in detail. By analytically modeling the noise sources and thermal budget limits, we will show that our solution can achieve a scale up to a thousand of qubits. Our proposed method can be seamlessly implemented using advanced silicon photonic processes, and the number of required optical fibers can be further reduced by using wavelength division multiplexing (WDM).