论文标题

匹配基于熵的差异估计

Matching entropy based disparity estimation from light field

论文作者

Shi, Ligen, Liu, Chang, He, Di, Zhao, Xing, Qiu, Jun

论文摘要

基于匹配的深度估计的主要挑战是防止遮挡和平滑区域中的不匹配。一个有效的匹配窗口满足三个特征:纹理丰富度,差异一致性和反封闭性应该能够在一定程度上防止错配。根据这些特征,我们建议在光场的空间域中提出匹配的熵,以测量匹配窗口中正确信息的量,这为匹配窗口选择提供了标准。基于匹配的熵正则化,我们建立了一个优化模型,以使用匹配的成本保真度项来建立深度估计。为了找到最佳,我们提出了一种两步自适应匹配算法。首先,自适应确定区域类型以识别遮挡,遮挡,光滑和纹理区域。然后,匹配的熵标准用于自适应选择匹配窗口的大小和形状以及可见的视点。两步过程可以通过选择有效的匹配窗口来减少不匹配和冗余计算。关于合成和实际数据的实验结果表明,所提出的方法可以有效提高遮挡和平滑区域深度估计的准确性,并且对于不同的噪声水平具有很强的鲁棒性。因此,从4D光场数据中获得了高精度的深度估计。

A major challenge for matching-based depth estimation is to prevent mismatches in occlusion and smooth regions. An effective matching window satisfying three characteristics: texture richness, disparity consistency and anti-occlusion should be able to prevent mismatches to some extent. According to these characteristics, we propose matching entropy in the spatial domain of light field to measure the amount of correct information in a matching window, which provides the criterion for matching window selection. Based on matching entropy regularization, we establish an optimization model for depth estimation with a matching cost fidelity term. To find the optimum, we propose a two-step adaptive matching algorithm. First, the region type is adaptively determined to identify occluding, occluded, smooth and textured regions. Then, the matching entropy criterion is used to adaptively select the size and shape of matching windows, as well as the visible viewpoints. The two-step process can reduce mismatches and redundant calculations by selecting effective matching windows. The experimental results on synthetic and real data show that the proposed method can effectively improve the accuracy of depth estimation in occlusion and smooth regions and has strong robustness for different noise levels. Therefore, high-precision depth estimation from 4D light field data is achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源