论文标题

脱位的cahn--hilliard方程,具有模拟表面扩散的应用

A sturcture-preserving, upwind-SAV scheme for the degenerate Cahn--Hilliard equation with applications to simulating surface diffusion

论文作者

Huang, Qiong-Ao, Jiang, Wei, Yang, Jerry Zhijian, Yuan, Cheng

论文摘要

本文为Cahn--Hilliard方程式建立了结构性的数值方案,具有退化的迁移率。首先,通过将有限的卷方法应用于标量辅助变量(SAV)方法重写的退化cahn--hilliard方程式,我们创造性地获得了一种无条件的限制,能量稳定,完全稳定且完全散布的方案,在首次范围内,$ h^$ h^$ h^$ h^y^$ h^n offriptive consection-frestient comploce clocked offersect offersection-h。然后,在高维情况下引入了尺寸分割技术,该技术大大降低了计算复杂性,同时保留了原始结构特性。提出了数值实验,以验证所提出的方案的边界保护和能量稳定的特性。最后,通过应用提出的结构传播方案,我们从数值上证明,Cahn--Hilliard方程可以近似地表面扩散,具有退化的迁移率和florys的潜力 - 当绝对温度足够低时,可以通过形式上分析通过形式上的属性匹配的方式使用形式分析。

This paper establishes a structure-preserving numerical scheme for the Cahn--Hilliard equation with degenerate mobility. First, by applying a finite volume method with upwind numerical fluxes to the degenerate Cahn--Hilliard equation rewritten by the scalar auxiliary variable (SAV) approach, we creatively obtain an unconditionally bound-preserving, energy-stable and fully-discrete scheme, which, for the first time, addresses the boundedness of the classical SAV approach under $H^{-1}$-gradient flow. Then, a dimensional-splitting technique is introduced in high-dimensional cases, which greatly reduces the computational complexity while preserves original structural properties. Numerical experiments are presented to verify the bound-preserving and energy-stable properties of the proposed scheme. Finally, by applying the proposed structure-preserving scheme, we numerically demonstrate that surface diffusion can be approximated by the Cahn--Hilliard equation with degenerate mobility and Flory--Huggins potential when the absolute temperature is sufficiently low, which agrees well with the theoretical result by using formal asymptotic analysis.wn theoretically by formal matched asymptotics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源