论文标题
通过不确定热力学参数的碳酸盐粘土反应对沉积盆地中二氧化碳的产生定量
Quantification of CO2 generation in sedimentary basins through Carbonate Clays Reactions with uncertain thermodynamic parameters
论文作者
论文摘要
我们开发了一种方法论框架和数学公式,该框架对大规模地下系统中的碳酸盐片反应(CCR)产生的二氧化碳量(CCR)产生的不确定性进行了估计,以帮助表征该地球化学过程的主要特征。我们的方法将一维压实模型融合在一起,从而提供了沿垂直方向的孔隙度,温度和压力演化的动力学,并且能够量化矿物质和孔隙水相互作用引起的二氧化碳的部分压力。我们提出的建模框架允许(i)估计气体所在的深度,以及(ii)基于盆地形成过程所涉及的沉积物的矿物学来量化生成的二氧化碳量。该研究的一个独特目标是量化影响化学平衡常数的不确定性传播到建模输出的方式,即CO2的通量。这些参数被认为是我们建模方法中不确定性的关键来源,因为与深度埋葬深度相关的温度和压力分布通常属于常用地球化学数据库的有效性范围,并且通常使用地球化学软件。我们还分析了沉积物中主要阶段相对丰富性对CCR过程激活的影响。作为测试床,我们考虑了一项计算研究,其中压力和温度条件代表了实际沉积物形成中观察到的那些。我们的结果有利于(i)CCR导致沉积系统中二氧化碳产生的特征压力和温度的概率评估,(ii)可以与CCR过程相关的二氧化碳生成速率的数量级。
We develop a methodological framework and mathematical formulation which yields estimates of the uncertainty associated with the amounts of CO2 generated by carbonate-clays reactions (CCR) in large-scale subsurface systems to assist characterization of the main features of this geochemical process. Our approach couples a one-dimensional compaction model, providing the dynamics of the evolution of porosity, temperature and pressure along the vertical direction, with a chemical model able to quantify the partial pressure of CO2 resulting from minerals and pore water interaction. The modeling framework we propose allows (i) estimating the depth at which the source of gases is located and (ii) quantifying the amount of CO2 generated, based on the mineralogy of the sediments involved in the basin formation process. A distinctive objective of the study is the quantification of the way the uncertainty affecting chemical equilibrium constants propagates to model outputs, i.e., the flux of CO2. These parameters are considered as key sources of uncertainty in our modeling approach because temperature and pressure distributions associated with deep burial depths typically fall outside the range of validity of commonly employed geochemical databases and typically used geochemical software. We also analyze the impact of the relative abundancy of primary phases in the sediments on the activation of CCR processes. As a test bed, we consider a computational study where pressure and temperature conditions are representative of those observed in real sedimentary formation. Our results are conducive to the probabilistic assessment of (i) the characteristic pressure and temperature at which CCR leads to generation of CO2 in sedimentary systems, (ii) the order of magnitude of the CO2 generation rate that can be associated with CCR processes.