论文标题

用CCG解析和大型语言模型在大脑中建造结构建筑

Modeling structure-building in the brain with CCG parsing and large language models

论文作者

Stanojević, Miloš, Brennan, Jonathan R., Dunagan, Donald, Steedman, Mark, Hale, John T.

论文摘要

为了建模自然主义环境中语言理解的行为和神经相关性,研究人员已转向自然语言处理和机器学习的宽覆盖工具。在明确建模句法结构的地方,先前的工作主要依赖于无上下文的语法(CFG),但是这种形式主义对人类语言的表达不足。组合类别语法(CCGS)是具有灵活的选区的足够表达性的语法组成模型,提供了增量的解释。在这项工作中,我们评估了一个更具表现力的CCG是否比fMRI收集的人类神经信号的CFG是否提供了更好的模型,而参与者会听听有声读物的故事。我们在CCG的变体之间进一步测试,这些变体在处理可选辅助物方面有所不同。这些评估是针对基线进行的,该基线包括来自变压器神经网络语言模型的下字可预测性的估计。这样的比较揭示了CCG结构建造的独特贡献,主要是左后叶叶:CCG衍生的措施与CFG衍生的措施相比,具有较高的神经信号。这些效应在空间上与双边上等时间效应不同,这些效应是可预测性所独有的。因此,用于结构建设的神经效应与自然主义聆听期间的可预测性可分开,这些效果的特征是语法的特征是其表达力是基于独立的语言理由的动机。

To model behavioral and neural correlates of language comprehension in naturalistic environments researchers have turned to broad-coverage tools from natural-language processing and machine learning. Where syntactic structure is explicitly modeled, prior work has relied predominantly on context-free grammars (CFG), yet such formalisms are not sufficiently expressive for human languages. Combinatory Categorial Grammars (CCGs) are sufficiently expressive directly compositional models of grammar with flexible constituency that affords incremental interpretation. In this work we evaluate whether a more expressive CCG provides a better model than a CFG for human neural signals collected with fMRI while participants listen to an audiobook story. We further test between variants of CCG that differ in how they handle optional adjuncts. These evaluations are carried out against a baseline that includes estimates of next-word predictability from a Transformer neural network language model. Such a comparison reveals unique contributions of CCG structure-building predominantly in the left posterior temporal lobe: CCG-derived measures offer a superior fit to neural signals compared to those derived from a CFG. These effects are spatially distinct from bilateral superior temporal effects that are unique to predictability. Neural effects for structure-building are thus separable from predictability during naturalistic listening, and those effects are best characterized by a grammar whose expressive power is motivated on independent linguistic grounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源