论文标题

层次自动平面生成遗传优化和多层感知器

Hierarchical Automatic Power Plane Generation with Genetic Optimization and Multilayer Perceptron

论文作者

Liao, Haiguang, Patil, Vinay, Dong, Xuliang, Shanbhag, Devika, Fallon, Elias, Hogan, Taylor, Spasojevic, Mirko, Kara, Levent Burak

论文摘要

我们提出了一种自动多层动力飞机生成方法,以加速印刷电路板(PCB)的设计。在PCB设计中,尽管已经开发了自动求解器来预测重要指标,例如IR-DROP,功率完整性和信号完整性,但动力平面本身的产生仍然在很大程度上依赖于费力的手动方法。我们的自动动力平面生成方法基于遗传优化与多层感知器相结合,并且能够自动在各种难度水平的问题集中生成功率平面。我们的方法GOMLP由外环遗传优化器(GO)和内部循环多层感知器(MLP)组成,该多层感知器(MLP)自动生成功率平面。我们方法的关键要素包括轮廓检测,特征扩展和距离度量,以使岛屿最小化复杂的功率平面的产生。我们将我们的方法比较基于A*的基线解决方案。 A*方法由连续的岛屿产生和合并过程组成,该过程可能会产生小于理想的解决方案。我们的实验结果表明,在单层功率平面问题上,我们的方法的表现优于71%的问题,而板布局难度不同。我们进一步描述了H-GOMLP,该H-GOMLP使用层次聚类和基于Hausdorff距离的层次聚类和净相似性扩展到多层功率平面问题。

We present an automatic multilayer power plane generation method to accelerate the design of printed circuit boards (PCB). In PCB design, while automatic solvers have been developed to predict important indicators such as the IR-drop, power integrity, and signal integrity, the generation of the power plane itself still largely relies on laborious manual methods. Our automatic power plane generation approach is based on genetic optimization combined with a multilayer perceptron and is able to automatically generate power planes across a diverse set of problems with varying levels of difficulty. Our method GOMLP consists of an outer loop genetic optimizer (GO) and an inner loop multi-layer perceptron (MLP) that generate power planes automatically. The critical elements of our approach include contour detection, feature expansion, and a distance measure to enable island-minimizing complex power plane generation. We compare our approach to a baseline solution based on A*. The A* method consisting of a sequential island generation and merging process which can produce less than ideal solutions. Our experimental results show that on single layer power plane problems, our method outperforms A* in 71% of the problems with varying levels of board layout difficulty. We further describe H-GOMLP, which extends GOMLP to multilayer power plane problems using hierarchical clustering and net similarities based on the Hausdorff distance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源