论文标题

受密度功能理论启发的量子电路的有效平均模拟

Efficient Mean-Field Simulation of Quantum Circuits Inspired by Density Functional Theory

论文作者

Bernardi, Marco

论文摘要

量子电路(QC)的确切模拟目前限制为$ \ sim $ 50 QUBITS,因为以QC Wave功能量表为单位使用QC Wave函数所需的内存和计算成本。因此,开发用于近似QC模拟的有效方案是当前的研究重点。在这里,我们以密度功能理论(DFT)启发的方法显示了QC的模拟,这是一种广泛研究多电子系统的方法。我们的计算可以预测几类具有通用门集的QC中的边际单量概率(SQP),具有超过90%的精度,尽管SQP的正式指数成本,但使用存储器和计算资源线性线性线性。这是通过开发QCS的平均场所描述并为DFT $ - $中的交换相关函数的最佳单一和双Quibent Gate函数$ - $类似物来发展而实现的,以在不计算QC波函数的情况下进化SQP。讨论了这种形式主义的当前局限性和未来扩展。

Exact simulations of quantum circuits (QCs) are currently limited to $\sim$50 qubits because the memory and computational cost required to store the QC wave function scale exponentially with qubit number. Therefore, developing efficient schemes for approximate QC simulations is a current research focus. Here we show simulations of QCs with a method inspired by density functional theory (DFT), a widely used approach to study many-electron systems. Our calculations can predict marginal single-qubit probabilities (SQPs) with over 90% accuracy in several classes of QCs with universal gate sets, using memory and computational resources linear in qubit number despite the formal exponential cost of the SQPs. This is achieved by developing a mean-field description of QCs and formulating optimal single- and two-qubit gate functionals $-$ analogs of exchange-correlation functionals in DFT $-$ to evolve the SQPs without computing the QC wave function. Current limitations and future extensions of this formalism are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源