论文标题

STPROMPT:语义引导和任务驱动的提示,有效地分类

STPrompt: Semantic-guided and Task-driven prompts for Effective Few-shot Classification

论文作者

Weng, Jinta, Hu, Yue, Qiu, Jing, Huan, Heyan

论文摘要

迅速学习的有效性已在不同的预训练的语言模型中证明。通过制定合适的模板并选择代表性标签映射,及时学习可以用作有效的知识探针。但是,在现有方法中找到合适的提示需要进行多次实验尝试或适当的矢量初始化,以制定合适的模板并选择代表性标签映射,这在几个片段学习任务中更为常见。在PLM工作过程中,我们尝试从任务语义的角度构建提示,从而提出了STPROMPTS-EMENCTION引导和任务驱动的提示模型。具体而言,首先在及时的增强池中构造了从语义依赖树(DEP-PROMPT)和特定于任务的元数据描述(元数据)产生的两个新颖提示,并且提出的模型将自动选择一个合适的语义提示来激发及时学习过程。我们的结果表明,所提出的模型在五个不同的文本分类任务的五个不同数据集中实现了最先进的性能,这证明更多的语义和重要提示可以假定为更好的知识证明工具。

The effectiveness of prompt learning has been demonstrated in different pre-trained language models. By formulating suitable template and choosing representative label mapping, prompt learning can be used as an efficient knowledge probe. However, finding suitable prompt in existing methods requires multiple experimental attempts or appropriate vector initialization on formulating suitable template and choosing representative label mapping, which it is more common in few-shot learning tasks. Motivating by PLM working process, we try to construct the prompt from task semantic perspective and thus propose the STPrompt -Semantic-guided and Task-driven Prompt model. Specifically, two novel prompts generated from the semantic dependency tree (Dep-prompt) and task-specific metadata description (Meta-prompt), are firstly constructed in a prompt augmented pool, and the proposed model would automatically select a suitable semantic prompt to motivating the prompt learning process. Our results show that the proposed model achieves the state-of-the-art performance in five different datasets of few-shot text classification tasks, which prove that more semantic and significant prompts could assume as a better knowledge proving tool.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源