论文标题
在近地磁云中的特定能量和压力上
On the specific energy and pressure in near-Earth magnetic clouds
论文作者
论文摘要
人们认为气体和磁场的压力和能量密度(与环境太阳风中的冠状动脉质量弹出(有关)被认为在确定其动力学方面发挥了重要作用,因为它们通过Heliosphere传播。我们比较特定的能量($ {\ rm erg \,g^{ - 1}} $)[包括动力学($ h _ {\ rm k} $),thermal($ h _ {\ rm th} $)和磁场($ h _ {$ h _ {$ h _ {\ rm mag} $)内部的贡献。我们检查了MC内部过量的热 +磁压力和特定能量(相对于背景)是否与它们的传播和内部膨胀速度相关。我们问,在空气动力学阻力的背景下,MC内部过量的热 +磁性能是否可能使它们类似于刚体。我们使用来自风航天器的近地现场数据来确定152个观察到的星际冠状质量弹出及其MC的样本。我们使用这些数据来计算各种指标来解决我们的问题。我们发现,MCS内部的总特定能量($ h $)大约等于背景太阳风中的总能量。我们发现,过量(热 +磁性)压力和特定能量与近地的繁殖和膨胀速度不太相关。我们发现,过量的热+磁性能$ \ gtrsim $我们研究的MC的81--89 \%的太阳风的特定动能。这可能解释了MCS如何保留其结构完整性并通过太阳风散装流量抵抗变形。
The pressure and energy density of the gas and magnetic field inside solar coronal mass ejections (in relation to that in the ambient solar wind) is thought to play an important role in determining their dynamics as they propagate through the heliosphere. We compare the specific energy (${\rm erg\,g^{-1}}$) [comprising kinetic ($H_{\rm k}$), thermal ($H_{\rm th }$) and magnetic field ($H_{\rm mag}$) contributions] inside MCs and the solar wind background. We examine if the excess thermal + magnetic pressure and specific energy inside MCs (relative to the background) is correlated with their propagation and internal expansion speeds. We ask if the excess thermal + magnetic specific energy inside MCs might make them resemble rigid bodies in the context of aerodynamic drag. We use near-Earth in-situ data from the WIND spacecraft to identify a sample of 152 well observed interplanetary coronal mass ejections and their MC counterparts. We compute various metrics using these data to address our questions. We find that the total specific energy ($H$) inside MCs is approximately equal to that in the background solar wind. We find that the the excess (thermal + magnetic) pressure and specific energy are not well correlated with the near-Earth propagation and expansion speeds. We find that the excess thermal+magnetic specific energy $\gtrsim$ the specific kinetic energy of the solar wind incident on 81--89 \% of the MCs we study. This might explain how MCs retain their structural integrity and resist deformation by the solar wind bulk flow.