论文标题
Muonic-Atom光谱和对核结构和精确QED理论的影响
Muonic-Atom Spectroscopy and Impact on Nuclear Structure and Precision QED Theory
论文作者
论文摘要
Muonic原子的激光和X射线光谱的最新进展在原子,核和粒子物理的交点上提供了有希望的长期可能性。在Muonic氢中,激光光谱测量结果将确定地面高铁分裂(HFS),并另外将羔羊的移位提高了5倍。具有低温微电容仪的精度光谱法具有显着改善$ z = 3-8 $范围的光核电荷半径的潜力。在核子和核结构效应的理论上应取得精度的互补进度。此Muonic-Atom光谱计划的影响将通过H和He $^+$光谱,简单分子(例如HD $^+$)和Penning Trap测量结果来扩大。在这种更广泛的背景下,人们可以测试针对两体或三体系统的Ab-Initio核理论,并确定基本常数,例如Rydberg($ R_ \ infty $)和细构建体($α$)常数。
Recent progress in laser and x-ray spectroscopy of muonic atoms offers promising long-term possibilities at the intersection of atomic, nuclear and particle physics. In muonic hydrogen, laser spectroscopy measurements will determine the ground-state hyperfine splitting (HFS) and additionally improve the Lamb shift by a factor of 5. Precision spectroscopy with cryogenic microcalorimeters has the potential to significantly improve the charge radii of the light nuclei in the $Z=3-8$ range. Complementary progress in precision should be achieved on the theory of nucleon- and nuclear-structure effects. The impact of this muonic-atom spectroscopy program will be amplified by the upcoming results from H and He$^+$ spectroscopy, simple molecules such as HD$^+$ and Penning trap measurements. In this broader context, one can test ab-initio nuclear theories, bound-state QED for two- or three-body systems, and determine fundamental constants, such as the Rydberg ($R_\infty$) and the fine-structure ($α$) constants.