论文标题

空间对象状态预测的高级合奏建模方法,该方法考虑了大气密度不确定性

Advanced ensemble modeling method for space object state prediction accounting for uncertainty in atmospheric density

论文作者

Paul, Smriti Nandan, Licata, Richard J., Mehta, Piyush M.

论文摘要

对于低地球轨道区域的对象,大气密度估计的不确定性是轨道预测误差的重要来源,这对于诸如卫星连接分析等空间情境意识活动至关重要。本文研究了在存在大气密度不确定性的情况下轨道误差分布的演变,该分布是使用概率机器学习技术建模的。这项工作使用了最近提出的用于密度估算的HASDM-ML,Champ-ML和MSIS-UQ机器学习模型。由于大气密度值的空间和时间相关性,该研究被复杂化。我们开发了几种蒙特卡洛方法,每种方法都捕获了不同的时空密度相关性,以研究密度不确定性对轨道不确定性传播的影响。但是,蒙特卡洛分析在计算上是昂贵的,因此还探索了基于Kalman滤波技术用于轨道不确定性传播的更快方法。在标准的扩展卡尔曼过滤器或无意义的卡尔曼滤清器框架下,很难将大气密度的不确定性转化为轨道状态的不确定性。这项工作使用所谓的考虑协方差sigma点(CCSP)滤波器,该滤波器可以解释轨道传播过程中的密度不确定性。作为用于验证目的的测试床,进行了CCSP和蒙特卡洛方法之间的比较轨道不确定性传播。最后,使用HASDM-ML,Champ-ML和MSIS-UQ密度模型,我们为四种不同空间天气条件的轨道不确定性定量提供了合奏方法。

For objects in the low Earth orbit region, uncertainty in atmospheric density estimation is an important source of orbit prediction error, which is critical for space situational awareness activities such as the satellite conjunction analysis. This paper investigates the evolution of orbit error distribution in the presence of atmospheric density uncertainties, which are modeled using probabilistic machine learning techniques. The recently proposed HASDM-ML, CHAMP-ML, and MSIS-UQ machine learning models for density estimation are used in this work. The investigation is convoluted because of the spatial and temporal correlation of the atmospheric density values. We develop several Monte Carlo methods, each capturing a different spatiotemporal density correlation, to study the effects of density uncertainty on orbit uncertainty propagation. However, Monte Carlo analysis is computationally expensive, so a faster method based on the Kalman filtering technique for orbit uncertainty propagation is also explored. It is difficult to translate the uncertainty in atmospheric density to the uncertainty in orbital states under a standard extended Kalman filter or unscented Kalman filter framework. This work uses the so-called consider covariance sigma point (CCSP) filter that can account for the density uncertainties during orbit propagation. As a test-bed for validation purposes, a comparison between CCSP and Monte Carlo methods of orbit uncertainty propagation is carried out. Finally, using the HASDM-ML, CHAMP-ML, and MSIS-UQ density models, we propose an ensemble approach for orbit uncertainty quantification for four different space weather conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源