论文标题

超越新兴双重全息量的量子混乱

Beyond quantum chaos in emergent dual holography

论文作者

Kim, Ki-Seok

论文摘要

众所周知,黑洞是一个快速的乱扰者,负责双重全息图中的量子混乱物理。最近,已经提出了欧几里得蠕虫孔在光谱外形的混沌行为中发挥核心作用。此外,基于量子混乱的有效野外理论方法重新解释了这种现象。由于分级的非线性$σ-$模型方法不仅可以描述Wigner-Dyson级统计数据,还可以描述其泊松分布,因此自然要询问双全息图是否可以触及量子混乱之外的泊松式。在这项研究中,我们研究了在较大的中央电荷极限中强烈耦合的保形场理论的混乱。一个想法是考虑度量波动的平均值,并考虑到从紫外线到IR边界的度量张量分布函数的重新归一化组流量。在这里,常规双重全息图描述了给定疾病构型的重新归一化效应。我们发现,重新归一化的分布函数普遍显示了幂律行为,被解释为无限的随机性固定点。

Black hole is well known to be a fast scrambler, responsible for physics of quantum chaos in dual holography. Recently, the Euclidean worm hole has been proposed to play a central role in the chaotic behavior of the spectral form factor. Furthermore, this phenomena was reinterpreted based on an effective field theory approach for quantum chaos. Since the graded nonlinear $σ-$model approach can describe not only the Wigner-Dyson level statistics but also its Poisson distribution, it is natural to ask whether the dual holography can touch the Poisson regime beyond the quantum chaos. In this study, we investigate disordered strongly coupled conformal field theories in the large central-charge limit. An idea is to consider a quenched average for metric fluctuations and to take into account the renormalization group flow of the metric-tensor distribution function from the UV to the IR boundary. Here, renormalization effects at a given disorder configuration are described by the conventional dual holography. We uncover that the renormalized distribution function shows a power-law behavior universally, interpreted as an infinite randomness fixed point.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源