论文标题
部分可观测时空混沌系统的无模型预测
The language of opinion change on social media under the lens of communicative action
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Which messages are more effective at inducing a change of opinion in the listener? We approach this question within the frame of Habermas' theory of communicative action, which posits that the illocutionary intent of the message (its pragmatic meaning) is the key. Thanks to recent advances in natural language processing, we are able to operationalize this theory by extracting the latent social dimensions of a message, namely archetypes of social intent of language, that come from social exchange theory. We identify key ingredients to opinion change by looking at more than 46k posts and more than 3.5M comments on Reddit's r/ChangeMyView, a debate forum where people try to change each other's opinion and explicitly mark opinion-changing comments with a special flag called "delta". Comments that express no intent are about 77% less likely to change the mind of the recipient, compared to comments that convey at least one social dimension. Among the various social dimensions, the ones that are most likely to produce an opinion change are knowledge, similarity, and trust, which resonates with Habermas' theory of communicative action. We also find other new important dimensions, such as appeals to power or empathetic expressions of support. Finally, in line with theories of constructive conflict, yet contrary to the popular characterization of conflict as the bane of modern social media, our findings show that voicing conflict in the context of a structured public debate can promote integration, especially when it is used to counter another conflictive stance. By leveraging recent advances in natural language processing, our work provides an empirical framework for Habermas' theory, finds concrete examples of its effects in the wild, and suggests its possible extension with a more faceted understanding of intent interpreted as social dimensions of language.