论文标题

QNET:量子本地序列编码器体系结构

QNet: A Quantum-native Sequence Encoder Architecture

论文作者

Day, Wei, Chen, Hao-Sheng, Sun, Min-Te

论文摘要

这项工作提出了QNET,这是一种新型的序列编码模型,该模型完全使用最小数量的Qubits在量子计算机上完全推断。令$ n $和$ d $分别代表序列的长度和嵌入式大小。点产品注意机制需要$ O(n^2 \ cdot d)$的时间复杂性,而QNET仅具有$ O(n+d)$量子电路深度。此外,我们介绍了RESQNET,RESQNET是一种量子古典杂种模型,该模型由由残留连接链接的几个QNET块组成,作为异源性变压器编码器。我们评估了有关各种自然语言处理任务的工作,包括文本分类,评分评分预测和命名实体识别。我们的模型在经典的最先进模型上表现出引人注目的性能,参数少了一千倍。总而言之,这项工作通过实验自然语言处理任务来调查在顺序数据中机器学习对近期量子计算机的优势。

This work proposes QNet, a novel sequence encoder model that entirely inferences on the quantum computer using a minimum number of qubits. Let $n$ and $d$ represent the length of the sequence and the embedding size, respectively. The dot-product attention mechanism requires a time complexity of $O(n^2 \cdot d)$, while QNet has merely $O(n+d)$ quantum circuit depth. In addition, we introduce ResQNet, a quantum-classical hybrid model composed of several QNet blocks linked by residual connections, as an isomorph Transformer Encoder. We evaluated our work on various natural language processing tasks, including text classification, rating score prediction, and named entity recognition. Our models exhibit compelling performance over classical state-of-the-art models with a thousand times fewer parameters. In summary, this work investigates the advantage of machine learning on near-term quantum computers in sequential data by experimenting with natural language processing tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源