论文标题
将噪声井数据和专家知识结合在不确定性下流量模型的贝叶斯校准中
Combining noisy well data and expert knowledge in a Bayesian calibration of a flow model under uncertainties: an application to solute transport in the Ticino basin
论文作者
论文摘要
地下水流量建模通常用于计算地下水头,估计地下水流动路径和旅行时间,并提供对含水层内溶质传输过程的见解。但是,由于地下异质性和地质复杂性,驱动地下水流量模型的输入参数的值通常是高度不确定的,并且缺乏测量/不可靠的测量值。这种不确定性会影响模型输出的准确性和可靠性。因此,在采用模型作为工程工具之前,必须量化参数的不确定性。在这项研究中,我们将不确定参数作为随机变量进行建模,并使用贝叶斯反演方法获得后验,数据信息,概率密度函数(PDF):尤其是我们考虑的可能性函数,我们考虑的可能性函数都考虑了井的测量和我们有关研究域中春季的先验知识。为了控制模型和计算复杂性,我们假设参数后PDF的高斯性。为了证实这一假设,我们对模型进行了可识别性分析:我们将反转过程应用于通过增加噪声水平污染的几组合成数据,并且确定在哪些噪声水平下,我们可以有效地恢复参数的“真实值”。然后,我们转到真实的井数据(来自意大利北部的提西诺河盆地,跨越了2014年夏季的一个月),并使用参数的后PDF作为起点,以对地下水旅行时间分布进行不确定性量化分析。
Groundwater flow modeling is commonly used to calculate groundwater heads, estimate groundwater flow paths and travel times, and provide insights into solute transport processes within an aquifer. However, the values of input parameters that drive groundwater flow models are often highly uncertain due to subsurface heterogeneity and geologic complexity in combination with lack of measurements/unreliable measurements. This uncertainty affects the accuracy and reliability of model outputs. Therefore, parameters' uncertainty must be quantified before adopting the model as an engineering tool. In this study, we model the uncertain parameters as random variables and use a Bayesian inversion approach to obtain a posterior,data-informed, probability density function (pdf) for them: in particular, the likelihood function we consider takes into account both well measurements and our prior knowledge about the extent of the springs in the domain under study. To keep the modelistic and computational complexities under control, we assume Gaussianity of the posterior pdf of the parameters. To corroborate this assumption, we run an identifiability analysis of the model: we apply the inversion procedure to several sets of synthetic data polluted by increasing levels of noise, and we determine at which levels of noise we can effectively recover the "true value" of the parameters. We then move to real well data (coming from the Ticino River basin, in northern Italy, and spanning a month in summer 2014), and use the posterior pdf of the parameters as a starting point to perform an Uncertainty Quantification analysis on groundwater travel-time distributions.