论文标题

在为车辆网络物理系统构建逻辑观点方面的质量成本权衡:一种深厚的增强学习方法

Quality-Cost Trade-off on Constructing Logical Views for Vehicular Cyber-Physical Systems: A Deep Reinforcement Learning Approach

论文作者

Wu, Junyuan, Xu, Xincao, Li, Chuzhao, Zhang, Hao, Xiao, Ke, Liu, Kai

论文摘要

随着传感技术的开发,车辆到所有的通信,边缘计算范式,车辆网络物理系统(VCP)已成为实现未来智能运输系统(ITS)的最基本平台。特别是,基于异质信息传感和上传的边缘节点上逻辑视图的构建对于实现VCP至关重要。但是,就及时性和准确性而言,更高质量的视野可能需要更高的传感和上传成本。鉴于此,本文致力于在构建VCP的逻辑观点的质量和成本之间达到平衡。具体而言,我们首先基于多级M/g/1优先级队列和基于可靠性保证的车辆到基础结构(V2I)通信的数据上传模型得出信息传感模型。在此基础上,我们同时设计了两个指标,即观点时代(AOV)和观点成本(COV)。然后,我们制定一个双目标问题,以最大化AOV并最大程度地减少COV。此外,我们提出了一个分布式分布的深层确定性策略梯度(D4PG)解决方案,以确定传感信息,频率,上传优先级,传输功率和V2I带宽。最后,我们构建了一个模拟模型并进行了全面的性能评估,模拟结果最终证明了所提出的解决方案的优越性。

With the development of sensing technologies, vehicle-to-everything (V2X) communications, edge computing paradigm, vehicular cyber-physical systems (VCPS) are emerging as the most fundamental platform for realizing future intelligent transportation systems (ITSs). In particular, the construction of logical views at the edge nodes based on heterogeneous information sensing and uploading are critical to the realization of VCPS. However, a higher-quality view in terms of timeliness and accuracy may require higher cost on sensing and uploading. In view of this, this paper is dedicated to striking a balance between the quality and the cost for constructing logical views of VCPS. Specifically, we first derive an information sensing model based on multi-class M/G/1 priority queue and a data uploading model based on reliability-guaranteed vehicle-to-infrastructure (V2I) communications. On this basis, we design two metrics, namely, age of view (AoV) and cost of view (CoV), simultaneously. Then, we formulate a bi-objective problem to maximize the AoV and minimize the CoV. Further, we propose a distributed distributional deep deterministic policy gradient (D4PG) solution to determine sensing information, frequency, uploading priority, transmission power, and V2I bandwidth. Finally, we build a simulation model and give a comprehensive performance evaluation, and the simulation results conclusively demonstrate the superiority of the proposed solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源