论文标题
优化机器学习方法以发现深镜头调查中的强力镜头
Optimizing machine learning methods to discover strong gravitational lenses in the Deep Lens Survey
论文作者
论文摘要
机器学习模型可以通过减少所需的人类检查量来大大改善成像调查中强烈重力镜头的搜索。在这项工作中,我们测试了经过RESNETV2神经网络架构培训的受监督,半监督和无监督的学习算法的性能,这些算法在深层镜头调查(DLS)中有效地找到强力重力镜片的能力。我们将调查中的星系图像与模拟镜头源相结合,作为训练数据集中的数据。我们发现,使用半监督学习的模型以及数据增强(在训练过程中应用于图像,例如旋转)和生成的对抗网络(GAN)生成的图像产生的图像产生了最佳性能。与监督算法相比,它们在所有召回值中的精度提供了5--10倍。在整个20度$^2 $ dls调查中应用最佳性能模型,我们在该模型的前17个图像预测中找到了3个A级镜头候选者。当对模型预测的$ 1 $%($ \ sim2500 $图像)的$ 1 $%($ \ sim2500 $图像)进行视觉检查时,这会增加到9级和13级B候选人。这是$ \ gtrsim10 \ times $与当前较浅的广阔区域调查(例如黑暗能源调查)相比,晶状体候选者的天空密度(例如黑暗能源调查),表明在即将进行的更深入的全天空调查中,等待发现的镜头。这些结果表明,要找到强透镜系统的管道可能是高效的,可以最大程度地减少人类的努力。我们还报告了我们模型确定的两个A级候选者的镜头性质的光谱证实,从而进一步验证了我们的方法。
Machine learning models can greatly improve the search for strong gravitational lenses in imaging surveys by reducing the amount of human inspection required. In this work, we test the performance of supervised, semi-supervised, and unsupervised learning algorithms trained with the ResNetV2 neural network architecture on their ability to efficiently find strong gravitational lenses in the Deep Lens Survey (DLS). We use galaxy images from the survey, combined with simulated lensed sources, as labeled data in our training datasets. We find that models using semi-supervised learning along with data augmentations (transformations applied to an image during training, e.g., rotation) and Generative Adversarial Network (GAN) generated images yield the best performance. They offer 5--10 times better precision across all recall values compared to supervised algorithms. Applying the best performing models to the full 20 deg$^2$ DLS survey, we find 3 Grade-A lens candidates within the top 17 image predictions from the model. This increases to 9 Grade-A and 13 Grade-B candidates when $1$% ($\sim2500$ images) of the model predictions are visually inspected. This is $\gtrsim10\times$ the sky density of lens candidates compared to current shallower wide-area surveys (such as the Dark Energy Survey), indicating a trove of lenses awaiting discovery in upcoming deeper all-sky surveys. These results suggest that pipelines tasked with finding strong lens systems can be highly efficient, minimizing human effort. We additionally report spectroscopic confirmation of the lensing nature of two Grade-A candidates identified by our model, further validating our methods.