论文标题

用分数Caputo衍生物的子扩散方程的逆问题

Inverse problem for the subdiffusion equation with fractional Caputo derivative

论文作者

Ashurov, Ravshan, Marjona, Shakarova

论文摘要

考虑使用分数Caputo衍生物确定子扩散方程的右侧的反问题。等式的右侧具有$ f(x)g(t)$的表格,未知是函数$ f(x)$。条件$ u(x,t_0)=ψ(x)$被视为过度确定条件,其中$ t_0 $是考虑域的某个内部点,$ψ(x)$是给定功能。傅立叶方法证明了在功能上的某些条件下,$ g(t)$和$ψ(x)$存在逆问题的解决方案,并且是唯一的。给出了一个示例,显示了某些签名函数$ g(t)$的逆问题解决方案的唯一性。结果表明,对于此类函数$ g(t)$的逆问题解决方案,必须满足方程式的椭圆形部分的某些正交条件,并且必须满足。

The inverse problem of determining the right-hand side of the subdiffusion equation with the fractional Caputo derivative is considered. The right-hand side of the equation has the form $f(x)g(t)$ and the unknown is function $f(x)$. The condition $ u (x,t_0)= ψ(x) $ is taken as the over-determination condition, where $t_0$ is some interior point of the considering domain and $ψ(x) $ is a given function. It is proved by the Fourier method that under certain conditions on the functions $g(t)$ and $ψ(x) $ the solution of the inverse problem exists and is unique. An example is given showing the violation of the uniqueness of the solution of the inverse problem for some sign-changing functions $g(t)$. It is shown that for the existence of a solution to the inverse problem for such functions $g(t)$, certain orthogonality conditions for the given functions and some eigenfunctions of the elliptic part of the equation must be satisfied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源