论文标题
通过变异电路学习的时间优化量子驱动
Time-Optimal Quantum Driving by Variational Circuit Learning
论文作者
论文摘要
具有参数化电路的数字量子计算机上量子动力学的模拟在基本和应用物理和化学中具有广泛的应用。在这种情况下,结合经典优化器和量子计算机的混合量子量子算法是解决特定问题的竞争策略。我们提出了其用于最佳量子控制的使用。我们模拟具有有限数量的Qubits的量子设备上捕获的量子粒子的波包扩展。然后,我们使用基于梯度下降的电路学习来确定控制相变与单一动力学施加的量子速度极限之间的固有连接。我们进一步讨论了方法对错误的鲁棒性,并证明了电路中缺乏贫瘠的高原。数字量子模拟和混合电路学习的组合为量子最佳控制开辟了新的前景。
The simulation of quantum dynamics on a digital quantum computer with parameterized circuits has widespread applications in fundamental and applied physics and chemistry. In this context, using the hybrid quantum-classical algorithm, combining classical optimizers and quantum computers, is a competitive strategy for solving specific problems. We put forward its use for optimal quantum control. We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number of qubits. We then use circuit learning based on gradient descent to work out the intrinsic connection between the control phase transition and the quantum speed limit imposed by unitary dynamics. We further discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit. The combination of digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.