论文标题

Varmae​​:用于域自动语言理解的变异蒙版自动编码器的预培训

VarMAE: Pre-training of Variational Masked Autoencoder for Domain-adaptive Language Understanding

论文作者

Hu, Dou, Hou, Xiaolong, Du, Xiyang, Zhou, Mengyuan, Jiang, Lianxin, Mo, Yang, Shi, Xiaofeng

论文摘要

预训练的语言模型已在一般基准上实现了有希望的表现,但在迁移到特定领域时表现不佳。最近的作品从头开始进行预培训或在域Corpora上进行持续的预培训。但是,在许多特定领域中,有限的语料库几乎不能支持获得精确表示。为了解决这个问题,我们提出了一种新型的基于变压器的语言模型,名为Varmae​​,以了解领域自适应语言的理解。在掩盖的自动编码目标下,我们设计了一个上下文不确定性学习模块,以将令牌的上下文编码为平滑的潜在分布。该模块可以产生各种且形成良好的上下文表示。关于科学和金融域NLU任务的实验表明,Varmae​​可以有效地适应具有有限资源的新领域。

Pre-trained language models have achieved promising performance on general benchmarks, but underperform when migrated to a specific domain. Recent works perform pre-training from scratch or continual pre-training on domain corpora. However, in many specific domains, the limited corpus can hardly support obtaining precise representations. To address this issue, we propose a novel Transformer-based language model named VarMAE for domain-adaptive language understanding. Under the masked autoencoding objective, we design a context uncertainty learning module to encode the token's context into a smooth latent distribution. The module can produce diverse and well-formed contextual representations. Experiments on science- and finance-domain NLU tasks demonstrate that VarMAE can be efficiently adapted to new domains with limited resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源