论文标题
Lebesgue可测量的增益V-纤维纤维上的凹面属性$ l^2 $积分对开放式Riemann表面
Concavity property of minimal $L^2$ integrals with Lebesgue measurable gain V--fibrations over open Riemann surfaces
论文作者
论文摘要
在本文中,我们介绍了最小$ l^2 $积分的凹陷属性的特征,而在开放的Riemann表面上,纤维化为线性。作为应用程序,我们获得了在最佳喷气机中保持平等的特征,$ l^2 $扩展问题从分析子集的纤维到开放式Riemann表面上的纤维,这意味着对套件猜想和扩展的suta猜测的纤维化版本的表征。
In this article, we present characterizations of the concavity property of minimal $L^2$ integrals degenerating to linearity in the case of fibrations over open Riemann surfaces. As applications, we obtain characterizations of the holding of equality in optimal jets $L^2$ extension problem from fibers over analytic subsets to fibrations over open Riemann surfaces, which implies characterizations of the fibration versions of the equality parts of Suita conjecture and extended Suita conjecture.