论文标题
Lebesgue可测量增益II
Concavity property of minimal $L^{2}$ integrals with Lebesgue measurable gain II
论文作者
论文摘要
在本文中,我们介绍了与乘法较小的理想束带相关的最小$ l^{2} $积分的凹度属性,而Lebesgue可测量的增益在弱pseudoconvexKähler歧管上。作为应用程序,我们给出了凹面变性为线性的必要条件,以及在开放式Riemann表面上保持相等性的表征。
In this article, we present a concavity property of the minimal $L^{2}$ integrals related to multiplier ideal sheaves with Lebesgue measurable gain on weakly pseudoconvex Kähler manifolds. As applications, we give a necessary condition for the concavity degenerating to linearity, and a characterization for the holding of the equality in optimal jets $L^2$ extension problem on open Riemann surfaces.