论文标题

Medsegdiff:扩散概率模型的医学图像分割

MedSegDiff: Medical Image Segmentation with Diffusion Probabilistic Model

论文作者

Wu, Junde, Fu, Rao, Fang, Huihui, Zhang, Yu, Yang, Yehui, Xiong, Haoyi, Liu, Huiying, Xu, Yanwu

论文摘要

扩散概率模型(DPM)最近成为计算机视觉中最热门的主题之一。它的图像生成应用,例如成像剂,潜在扩散模型和稳定的扩散表现出了令人印象深刻的产生能力,这引起了社区的广泛讨论。许多最近的研究还发现,它在许多其他视觉任务中很有用,例如图像脱张,超分辨率和异常检测。受DPM成功的启发,我们将基于DPM的第一个基于DPM的模型用于一般医学图像分割任务,我们将其命名为Medsegdiff。为了增强DPM中医疗图像分割的逐步区域关注,我们提出了动态条件编码,该编码为每个采样步骤建立了状态适应条件。我们进一步提出了特征频率解析器(FF-parser),以消除此过程中高频噪声组件的负面影响。我们在三个具有不同图像方式的医疗分割任务上验证Medsegdiff,这是对底面图像的视频杯分割,对MRI图像上的脑肿瘤分割和超声图像上的甲状腺结节分割。实验结果表明,Medsegdiff的性能差距相当大,表明该模型的概括和有效性。我们的代码在https://github.com/wujunde/medsegdiff上发布。

Diffusion probabilistic model (DPM) recently becomes one of the hottest topic in computer vision. Its image generation application such as Imagen, Latent Diffusion Models and Stable Diffusion have shown impressive generation capabilities, which aroused extensive discussion in the community. Many recent studies also found it is useful in many other vision tasks, like image deblurring, super-resolution and anomaly detection. Inspired by the success of DPM, we propose the first DPM based model toward general medical image segmentation tasks, which we named MedSegDiff. In order to enhance the step-wise regional attention in DPM for the medical image segmentation, we propose dynamic conditional encoding, which establishes the state-adaptive conditions for each sampling step. We further propose Feature Frequency Parser (FF-Parser), to eliminate the negative effect of high-frequency noise component in this process. We verify MedSegDiff on three medical segmentation tasks with different image modalities, which are optic cup segmentation over fundus images, brain tumor segmentation over MRI images and thyroid nodule segmentation over ultrasound images. The experimental results show that MedSegDiff outperforms state-of-the-art (SOTA) methods with considerable performance gap, indicating the generalization and effectiveness of the proposed model. Our code is released at https://github.com/WuJunde/MedSegDiff.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源