论文标题
Kuaipedia:一个大型多模式短视频百科全书
Kuaipedia: a Large-scale Multi-modal Short-video Encyclopedia
论文作者
论文摘要
在过去的二十年中,在线百科全书(例如Wikipedia)已经发达和研究。可以在由志愿者社区编辑的Wiki页面上找到Wiki项目的任何属性或其他信息。但是,传统的文本,图像和表几乎无法表达Wiki项目的某些方面。例如,当我们谈论``shiba inu''时,人们可能会更关心``如何喂养它''或``如何训练它不是保护食物''。目前,短视频平台已成为在线世界中的标志。无论您是在Tiktok,Instagram,Kuaishou还是YouTube短裤上,短视频应用程序都改变了我们今天消费和创建内容的方式。除了制作简短的娱乐视频外,我们还可以找到越来越多的作者在各行各业中广泛分享有见地的知识。这些简短的视频(我们称之为知识视频)可以轻松地表达消费者想了解某个项目(例如shiba Inu)的任何方面(例如头发或操作方法),并且可以像在线百科全书一样系统地分析和组织它们。在本文中,我们提出了Kuaipedia,这是一个大规模的多模式百科全书,该百科全书由衬有项目,方面和简短视频组成,并从中国众所周知的小型Video平台Kuaishou(Kwai)的数十亿个视频中提取。我们首先从多个来源收集了项目,并从数百万用户查询中以用户为中心的方面来构建项目 - 敏感树。然后,我们提出了一项新任务,称为``多模式项目''linking'',作为``实体链接''的扩展,以将短视频链接到项目对象对并构建整个短视频百科全书。内在评估表明,我们的百科全书大规模且高度准确。我们还进行了足够的外部实验,以展示Kuaipedia如何帮助基本应用,例如实体键入和实体链接。
Online encyclopedias, such as Wikipedia, have been well-developed and researched in the last two decades. One can find any attributes or other information of a wiki item on a wiki page edited by a community of volunteers. However, the traditional text, images and tables can hardly express some aspects of an wiki item. For example, when we talk about ``Shiba Inu'', one may care more about ``How to feed it'' or ``How to train it not to protect its food''. Currently, short-video platforms have become a hallmark in the online world. Whether you're on TikTok, Instagram, Kuaishou, or YouTube Shorts, short-video apps have changed how we consume and create content today. Except for producing short videos for entertainment, we can find more and more authors sharing insightful knowledge widely across all walks of life. These short videos, which we call knowledge videos, can easily express any aspects (e.g. hair or how-to-feed) consumers want to know about an item (e.g. Shiba Inu), and they can be systematically analyzed and organized like an online encyclopedia. In this paper, we propose Kuaipedia, a large-scale multi-modal encyclopedia consisting of items, aspects, and short videos lined to them, which was extracted from billions of videos of Kuaishou (Kwai), a well-known short-video platform in China. We first collected items from multiple sources and mined user-centered aspects from millions of users' queries to build an item-aspect tree. Then we propose a new task called ``multi-modal item-aspect linking'' as an expansion of ``entity linking'' to link short videos into item-aspect pairs and build the whole short-video encyclopedia. Intrinsic evaluations show that our encyclopedia is of large scale and highly accurate. We also conduct sufficient extrinsic experiments to show how Kuaipedia can help fundamental applications such as entity typing and entity linking.