论文标题

用于计算机断层扫描的基于物理的自我监管

Self-supervised Physics-based Denoising for Computed Tomography

论文作者

Zainulina, Elvira, Chernyavskiy, Alexey, Dylov, Dmitry V.

论文摘要

计算机断层扫描(CT)由于其固有的X射线辐射而对患者施加风险,刺激了低剂量CT(LDCT)成像方法的发展。降低辐射剂量会降低健康风险,但导致嘈杂的测量,从而降低了组织的对比度并导致CT图像中的伪影。最终,这些问题可能会影响医务人员的看法,并可能引起误诊。现代的深度学习抑制方法减轻了挑战,但需要低噪声的CT图像对进行培训,很少收集在常规的临床工作流程中。在这项工作中,我们引入了一种新的自我监督方法,用于CT denoising noise2noisetd-anm,可以在没有高剂量CT投影地面真相图像的情况下进行训练。与以前提出的自我监督技术不同,引入的方法利用了相邻投影与CT噪声分布的实际模型之间的连接。这样的组合允许使用原始嘈杂的LDCT预测,可以使用可解释的无参考降解。我们使用LDCT数据进行的实验表明,所提出的方法达到了完全监督的模型的水平,有时取代它们,很容易将其推广到各种噪声水平,并且表现出更先进的自我监督的DeNoising算法。

Computed Tomography (CT) imposes risk on the patients due to its inherent X-ray radiation, stimulating the development of low-dose CT (LDCT) imaging methods. Lowering the radiation dose reduces the health risks but leads to noisier measurements, which decreases the tissue contrast and causes artifacts in CT images. Ultimately, these issues could affect the perception of medical personnel and could cause misdiagnosis. Modern deep learning noise suppression methods alleviate the challenge but require low-noise-high-noise CT image pairs for training, rarely collected in regular clinical workflows. In this work, we introduce a new self-supervised approach for CT denoising Noise2NoiseTD-ANM that can be trained without the high-dose CT projection ground truth images. Unlike previously proposed self-supervised techniques, the introduced method exploits the connections between the adjacent projections and the actual model of CT noise distribution. Such a combination allows for interpretable no-reference denoising using nothing but the original noisy LDCT projections. Our experiments with LDCT data demonstrate that the proposed method reaches the level of the fully supervised models, sometimes superseding them, easily generalizes to various noise levels, and outperforms state-of-the-art self-supervised denoising algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源