论文标题
时空非局部交通流模型:放松表示和本地限制
A Space-time Nonlocal Traffic Flow Model: Relaxation Representation and Local Limit
论文作者
论文摘要
我们提出并研究了一项非局部保护法在存在跨车间通信中的交通流量。假定非局部信息以有限的速度传播,并且该模型涉及加权交通密度的时空非本地积分。该模型的适合性度是在模型参数和适当定义的初始条件下在适当条件下建立的。在非本地积分中的重量内核是指数函数的特殊情况下,非本地模型可以重新构成$ 2 \ times2 $双曲线系统,并具有放松。在这种放松表示的帮助下,我们表明Lighthill-Whitham-Richards模型在平衡近似极限中恢复。
We propose and study a nonlocal conservation law modelling traffic flow in the existence of inter-vehicle communication. It is assumed that the nonlocal information travels at a finite speed and the model involves a space-time nonlocal integral of weighted traffic density. The well-posedness of the model is established under suitable conditions on the model parameters and by a suitably-defined initial condition. In a special case where the weight kernel in the nonlocal integral is an exponential function, the nonlocal model can be reformulated as a $2\times2$ hyperbolic system with relaxation. With the help of this relaxation representation, we show that the Lighthill-Whitham-Richards model is recovered in the equilibrium approximation limit.