论文标题
复杂的反温度平面中量子关键的特征
Signatures of quantum criticality in the complex inverse temperature plane
论文作者
论文摘要
复杂分区功能和Fisher Zeros的概念为有限温度和实时动态相变提供了内在的统计机制。我们将这些复杂性的效用扩展到量子相变。我们精确地识别了线条或封闭曲线的不同Fisher零,并阐明了它们与域壁激发或限制介体的对应关系,用于一维横向场ISING模型。 Fisher Zeros的跨界行为为量子相变附近的关键性提供了令人着迷的图片,在该量子相变,在该量子相转换中,激发能量尺度是定量确定的。我们通过张量网络计算进一步确认了我们的结果,并证明了从封闭的零曲线的破坏中证明了脱糊状的介子激发的明显信号。我们的结果明确显示了Fisher Zeros在量子相变的重要特征,并为探索量子关键的新途径开辟了新的途径。
Concepts of the complex partition functions and the Fisher zeros provide intrinsic statistical mechanisms for finite temperature and real time dynamical phase transitions. We extend the utility of these complexifications to quantum phase transitions. We exactly identify different Fisher zeros on lines or closed curves and elucidate their correspondence with domain-wall excitations or confined mesons for the one-dimensional transverse field Ising model. The crossover behavior of the Fisher zeros provides a fascinating picture for criticality near the quantum phase transition, where the excitation energy scales are quantitatively determined. We further confirm our results by tensor network calculations and demonstrate a clear signal of deconfined meson excitations from the disruption of the closed zero curves. Our results unambiguously show significant features of Fisher zeros for a quantum phase transition and open up a new route to explore quantum criticality.