论文标题

关于具有许多全球K形式的一般类型的投射品种

On projective varieties of general type with many global k-forms

论文作者

Chen, Meng, Jiang, Zhi

论文摘要

我们证明了以下结果:(1)对于任何非字体投影$ 3 $ -folds $ x $的通用类型的$ X $,$χ(\ Mathcal {o} _x)\ neq 2,3 $,规范量$ \ text {vol}(x)$具有最佳的下限$ \ frac $ \ frac {1} $ {420} $; (2)对于非字体投影$ 3 $ -folds(分别$ 4 $ -folds)$ x $的通用类型,带有$ h^{2,0}(x)(x)\ geq 108 \ cdot 42^3+4 $(分别为$ h^{2,0}(x)$ 3 $ 3 $ 3 $ 3 $ - $ 3 $ 5 $ 5- $ 5 $ 5 $ 5 $。 (3)对于任何非字体投影$ n $ -flold $ x $的通用类型的$ q(x)> n \ geq 4 $,规范稳定性指数$ r_s $ r_s(x)$是$(n-1)$ - th Canonical稳定性指数$ r_ r_ r_ {n-1} $的上限。

We prove the following results: (1) for any nonsingular projective $3$-folds $X$ of general type with $χ(\mathcal{O}_X)\neq 2,3$, the canonical volume $\text{Vol}(X)$ has the optimal lower bound $\frac{1}{420}$; (2) for nonsingular projective $3$-folds (resp. $4$-folds) $X$ of general type with $h^{2, 0}(X)\geq 108\cdot 42^3+4$ (resp. with sufficiently large $h^{2, 0}(X)$), the $3$-canonical map (resp. $5$-canonical map) is stably birational; (3) for any nonsingular projective $n$-fold $X$ of general type with $q(X)>n\geq 4$, the canonical stability index $r_s(X)$ is upper bounded by the $(n-1)$-th canonical stability index $r_{n-1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源