论文标题

sublrinear bilipschitz等效性和sublerearlie Morse边界

Sublinear biLipschitz equivalence and sublinearly Morse boundaries

论文作者

Pallier, Gabriel, Qing, Yulan

论文摘要

度量空间之间的sublinear bilipschitz等价(SBE)是从一个空间到另一个空间的地图,它扭曲了有界的乘法常数和sublinear添加误差。鉴于任何额线功能$κ$,$κ$ - 摩尔斯边界均定义为所有地球适当的度量空间,为准地理射线的准中性不变且可迁移的拓扑空间。在本文中,我们证明,在合适的SBE下,$κ$ -Morse的边界是不变的。证据中的一种工具是使用sublinear射线,即半线的sublinear bilispchitz嵌入,从而概括了准晶状射线。作为一种应用,我们区分了一对由Behrstock提出的右角Coxeter组,直至Sublrinear Bilipschitz等价。我们还表明,在轻度的假设下,可计数组的通用随机步行是均方根射线。

A sublinear biLipschitz equivalence (SBE) between metric spaces is a map from one space to another that distorts distances with bounded multiplicative constants and sublinear additive error. Given any sublinear function $κ$, $κ$-Morse boundaries are defined for all geodesic proper metric spaces as a quasi-isometrically invariant and metrizable topological space of quasi-geodesic rays. In this paper, we prove that $κ$-Morse boundaries of proper geodesic metric spaces are invariant under suitable SBEs. A tool in the proof is the use of sublinear rays, that is, sublinear bilispchitz embeddings of the half line, generalizing quasi-geodesic rays. As an application we distinguish a pair of right-angled Coxeter groups brought up by Behrstock up to sublinear biLipschitz equivalence. We also show that under mild assumptions, generic random walks on countable groups are sublinear rays.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源