论文标题
一种用于口语命令识别的声学建模的量子内核学习方法
A Quantum Kernel Learning Approach to Acoustic Modeling for Spoken Command Recognition
论文作者
论文摘要
我们提出了一个量子内核学习(QKL)框架,以解决在低资源场景中训练大型声学模型中经常遇到的固有数据稀疏问题。我们根据经典到量词的特征编码投影声学特征。与现有的量子卷积技术不同,我们利用QKL具有量子空间中的功能来设计基于内核的分类器。关于挑战的口语命令识别任务的实验结果(例如阿拉伯语,乔治亚语,Chuvash和立陶宛语)表明,基于QKL的混合方法对现有的经典和量子解决方案进行了良好的改进。
We propose a quantum kernel learning (QKL) framework to address the inherent data sparsity issues often encountered in training large-scare acoustic models in low-resource scenarios. We project acoustic features based on classical-to-quantum feature encoding. Different from existing quantum convolution techniques, we utilize QKL with features in the quantum space to design kernel-based classifiers. Experimental results on challenging spoken command recognition tasks for a few low-resource languages, such as Arabic, Georgian, Chuvash, and Lithuanian, show that the proposed QKL-based hybrid approach attains good improvements over existing classical and quantum solutions.