论文标题
量子场理论中的rényi互助
Rényi Mutual Information in Quantum Field Theory
论文作者
论文摘要
我们研究了通过PetzRényi相对熵定义的量子场理论中Rényi互信息(RMI)的适当定义。与标准定义不同,我们计算的RMI是子系统之间相关性的真实度量,这是由其在本地操作下的非负和单调性证明的。此外,RMI是紫外线有限的,在连续限制下定义明确。我们在量子场理论中为RMI开发了一种复制路径积分方法,并使用扭曲场在1+1D的共形场理论中明确评估它。我们证明它界定了连接的相关函数,并在无质量的自由效费理论中与确切的数字进行检查。
We study a proper definition of Rényi mutual information (RMI) in quantum field theory as defined via the Petz Rényi relative entropy. Unlike the standard definition, the RMI we compute is a genuine measure of correlations between subsystems, as evidenced by its non-negativity and monotonicity under local operations. Furthermore, the RMI is UV finite and well-defined in the continuum limit. We develop a replica path integral approach for the RMI in quantum field theories and evaluate it explicitly in 1+1D conformal field theory using twist fields. We prove that it bounds connected correlation functions and check our results against exact numerics in the massless free fermion theory.