论文标题

沿Piatetski-Shapiro序列同步自动序列

Synchronizing automatic sequences along Piatetski-Shapiro sequences

论文作者

Deshouillers, Jean-Marc, Drmota, Michael, Müllner, Clemens, Shubin, Andrei, Spiegelhofer, Lukas

论文摘要

本文的目的是研究沿PIATETSKI-SHAPIRO序列$ \ lfloor n^c \ rfloor $与non-integer $ c> 1 $同步的$ k $ -automatic序列$ a(n)$。特别是,我们表明$ a(\ lfloor n^c \ rfloor)$满足$ \ sum_ {n \ le x}λ(n)a(\ lfloor n^c \ rfloor)\ sim c \ sim c \ sim c \ s $ c \ y crathers in crathertians的质量定理。 \ Mathbb z $。作为一个有趣的附加结果,我们表明序列$ \ lfloor n^c \ rfloor \ bmod m $具有多项式子单词复杂性。

The purpose of this paper is to study subsequences of synchronizing $k$-automatic sequences $a(n)$ along Piatetski-Shapiro sequences $\lfloor n^c \rfloor$ with non-integer $c>1$. In particular, we show that $a(\lfloor n^c \rfloor)$ satisfies a prime number theorem of the form $\sum_{n\le x} Λ(n)a(\lfloor n^c \rfloor) \sim C\, x$, and, furthermore, that it is deterministic for $c \in \mathbb R\setminus \mathbb Z$. As an interesting additional result, we show that the sequence $\lfloor n^c\rfloor \bmod m$ has polynomial subword complexity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源