论文标题

基于数据的聚合物单位指纹(PUFP):用于机器学习的聚合物有机半导体的新表达

Data-based Polymer-Unit Fingerprint (PUFp): A Newly Accessible Expression of Polymer Organic Semiconductors for Machine Learning

论文作者

Zhang, Xinyue, Wei, Genwang, Sheng, Ye, Yang, Jiong, Ye, Caichao, Zhang, Wenqing

论文摘要

在寻找高性能有机半导体(OSC)的过程中,在材料开发中,确定重要的功能单元至关重要,这些功能单元在材料性能中起关键作用并随后建立亚物业 - 培训关系。在此,我们描述了一个聚合物单位指纹(PUFP)生成框架。机器学习(ML)模型可用于通过使用PUFP信息作为结构输入,并使用678个收集的OSC数据来确定结构 - 动作关系。构建了由445个单元组成的聚合物单位库,并确定了OSC迁移率的关键聚合物单元。通过研究聚合物单元与迁移率性能的组合,提出了一种通过组合ML方法和PUFP信息来设计聚合物OSC材料的方案,不仅可以被动地预测OSC的移动性,而且还为新的高型型OSC材料设计提供了结构指导。提出的方案展示了通过预评估和分类ML步骤筛选新材料的能力,并且是将ML应用于新的高弹性OSC发现中的替代方法。

In the process of finding high-performance organic semiconductors (OSCs), it is of paramount importance in material development to identify important functional units that play key roles in material performance and subsequently establish substructure-property relationships. Herein, we describe a polymer-unit fingerprint (PUFp) generation framework. Machine learning (ML) models can be used to determine structure-mobility relationships by using PUFp information as structural input with 678 pieces of collected OSC data. A polymer-unit library consisting of 445 units is constructed, and the key polymer units for the mobility of OSCs are identified. By investigating the combinations of polymer units with mobility performance, a scheme for designing polymer OSC materials by combining ML approaches and PUFp information is proposed to not only passively predict OSC mobility but also actively provide structural guidance for new high-mobility OSC material design. The proposed scheme demonstrates the ability to screen new materials through pre-evaluation and classification ML steps and is an alternative methodology for applying ML in new high-mobility OSC discovery.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源