论文标题

加权图上有序场上的双cheger常数

Dual Cheeger constant for weighted graphs over ordered fields

论文作者

Muranova, Anna

论文摘要

我们考虑一个双cheger常数$ \叠加h $,用于有限的图形,带有来自任意实际关闭的有序字段的边缘权重。在图中,我们获得了$ \叠加h $的估计。此外,我们估计了离散拉普拉斯操作员的最大特征值,以$ \叠加h $,并显示估计的清晰度。作为一个例子,我们考虑了Levi-Civita数字的非架构字段上的图形。

We consider a dual Cheeger constant $\overline h$ for finite graphs with edge weights from an arbitrary real-closed ordered field. We obtain estimates of $\overline h$ in terms of number of vertices in graph. Further, we estimate the largest eigenvalue for the discrete Laplace operator in terms of $\overline h$ and show the sharpness of estimates. As an example we consider graphs over non-Archimedean field of the Levi-Civita numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源